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A non-linear controlled system in a finite time interval with phase constraints and a given target set is considered. The problem 
of constructing the viability kernel in the phase constraints is investigated. The viability kernel is the set of all initial positions 
from which at least one viable trajectory emerges, that is, the trajectory of the system constrained by the phase constraints and 
which enters the target set. A method of constructing time-discrete approximations of the viability kernel is proposed. �9 2006 
Elsevier Ltd. All rights reserved. 

This paper touches on the investigations in [1-10]~ into viability theory and the theory of differential 
games. In the development of the problem of constructing a viability kernel, a target set inside the phase 
constraints is introduced. Here, a trajectory which remains within the phase constraints right up to its 
arrival in the target set is considered to be viable. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose a controlled system is specified, the behaviour of which in the time interval ~ = [to, 0] 
(to < 0 < oo) is described by the equation 

A = f ( t , x , u ) ,  x[t0]  = x 0, u ~  ~ (1.1) 

Here x is an m-dimensional phase vector from the Euclidean space R m, u is a control and ~ is a 
compactum in the Euclidean space ~P. 

It is assumed that the following conditions are satisfied. 
1. The vector function f(t, x, u) is defined and continuous by totality of all its arguments in the set 
x R m x ~ and, for a certain ~t ~ (0, oo), satisfies the inequality 

I l f ( t ,x ,u) l l<~t( l  +llxll), V ( t , x , u ) ~  ~ x R m •  

I Ix II is the Euclidean norm of the vector x ~ ~m. 
2. The vector function f(t, x, u) is locally Lipschitzian with respect to x and, for any compactum 
C ~m, a constant L = L(~ )  ~ (0, oo) exists such that 

[If(t, xl, u) - f ( t ,  x 2, u)[[ < L I I x ,  - x211, V(t,  x l ,  u), (t, x 2, u)  ~ ,,~ x ~ • 

By permissible controls of system (1.1), we mean any Lebesgue measurable vector-function u[t], 
t e ~ which takes values from ~ almost everywhere in ~. 

tPrikl. Mat. Mekh. Vol. 69, No. 6, pp. 976-985, 2005. 
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Ekaterinburg, 1995. 
0021-8928/S--see front matter. �9 2006 Elsevier Ltd. All rights reserved. 
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Suppose u[t], t e # is a certain permissible control. We shall call the absolutely continuous vector- 
function x[t], t ~ #,  which takes values in ~rn and satisfies the equality 

2It] = f( t ,  x[t], u[t]) almost everywhere in # 

the trajectory of controlled system, which is generated by the permissible control u[t]. 
The trajectory of controlled system(1.1), which is defined in the interval contained in 3~, is defined 

in precisely the same way. 
The totality of the trajectories of system (1.1), defined in the interval [ta, 0] and generated by all possible 

permissible controls u[t], t ~ [tl, 0] such that X[tl] = Xl, is denoted by the symbol X( t l ,  Xl), where 
(tl,Xl) E 3 ~ • ~m. We assume that X(t2; tl, Xl) = {x[t2]:x[t ] E X( t l ,  X1)} , (tl, x1) E ~ x ~rn, t2 ~ [tl, 0] is 
the attainability set of system (1.1) at the instant t2 (see Fig. 1). 

We will assume that a phase constraint is specified for system (1.1), that is, a closed set �9 C # x ~m 
having non-empty sections ~(t) = {x e Nm: (t, x) e q~}, t s #. 

A definition of a viable trajectory x[t], t ~ [tl, 0] of a controlled system has been given in [9] as a 
trajectory which satisfies the condition x[t] ~ ~ ( t ) ,  t ~ [tl, 0]. 

We will now consider the case when, together with the set ~,  a constraint and a target set T C q~, 
T ( 0 ) ,  O, which is closed in 3~ x N m, are specified. 

Definition 1. We will call a trajectory x[t] of system (1.1), which is defined in the interval 
1 = [tl, t2] C #, a viable trajectory (VT) if the condition x[t] ~ ~ ( t ) ,  t ~ I; x[t2] e T(t2) is satisfied, where 
t2 is the minimum instant at which the trajectory x[t] enters the target set T. 

A viable trajectory is shown schematically in Fig. 2. 
Note the connection between the definition of a target set from [9] and the definition which has been 

presented here. Suppose the target set is defined by the relations T(t)  = ~ ,  t ~ [to, 0); T(0) = q~(0). 
The trajectory x[t], t ~ [q, 0] of controlled system (1.1) is a viable trajectory in the sense of Definition 
1 if and only if it is a viable trajectory in the sense of the definition from [9]. 

The condition for the target set T to be bounded guarantees that a certain compactum ~ '  C ~m exists 
such that T C # x ~'. The following lemma then follows from condition 1. 

L e m m a  1. A compactum ~ C ~m exists which contains the phase portraits of all the viable trajectories 
x[t], t ~ I of controlled system (1.1): x[t] ~ ~ ,  t ~ L 

We will now formulate a fundamental definition. 

Definition 2. We call the set of all points (tl, X1) E ~ X ~m, from which at least one viable trajectory 
of system (1.1) emerges the viability kernel f2' of system (1.1). 

The viability kernel is shown schematically in Fig. 3. 
The following lemma follows from Lemma 1. 

L e m m a  2. A compactum ~ C ~m exists such that ~'  C 3 ~ x ~.  

Assertion 1. T C f~' C r~. 
The aim of this paper is to indicate a method for constructing the kernel fs Here, we replace 

controlled system (1.1) with a differential inclusion which corresponds to system (1.1) and enables one 
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to apply the technique of approximate calculations of  stable bridges, which is used in the theory of 
positional differential games (see [10], for example), to the problem of constructing the viability kernel. 

Instead of controlled system (1.1), we consider the differential inclusion 

Jc~ F(t, x), (t, x) ~ ~ x Rr~ (1.2) 

where F(t, x) is the convex hull of the set {f(t, x, u): u ~ ~}.  
Inclusion (1.2) satisfies the following conditions, which are analogous to conditions I and 2, imposed 

on system (1.1). 
1. The set-valued map (t, x) --~ F(t, x) is continuous by totality of (t, x) in the Hausdorff  metric and 

a constant ~t ~ (0, oo) exists such that the following condition is satisfied 

sup Ilfll <l.t(1 +llxll), V ( t , x ) ~  ~ x R  'n 
f ~ F(t, x) 

2. The set-value map (t, x) ~ F(t, x) is locally Lipschitzian with respect to x in the Hausdorff  metric, 
that is, a constant L = L ( ~ )  ~ (0, oo) is found for any compactum ~ C •m such that the condition 

d(F(t, x l), F(t, x2)) _< Ll lx l  - x211, k/(t, x l), (t, x2) e ~ x 

for the Hausdorff  distance is satisfied. 
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We shall call an absolutely continuous vector function y[t], t ~ I C ~, which takes values in R m and 
which satisfies the inclusion 

y [t] ~ F(t, y[t]) almost everywhere in I 

a trajectory of inclusion (1.2). 
In the same way as above in the case of inclusion (1.2), we will now introduce into the treatment the 

concept of the set of all trajectories which are defined in the interval [ta, 0] and emerge at the instant 
tl from the point Xl: Y(q, xl), (q, Xl) ~ ~ x ~m and the concept of an attainability set: Y(t2; tl, xl) = 
{y[t2]: y[t] c Y(q, Xl)}. 

We will now also give a definition of a viable trajectory. 

Definition 3. We will call a trajectoryy[t] of inclusion (1.2), defined in the interval [tl, t2] C #, a viable 
trajectory if the following conditions are satisfied 

y[ t]~  ~P(t), t ~  [ t l ,  t2];  Y [ t 2 ] ~  T( t2 ) ;  y[ t ]~  T ( t ) ,  t ~  [ t l ,  t2 )  (1.3) 

Like to Lemma 1, the following lemma is true. 

Lemma 3. A compactum ~ C ~m exists such that y[t] ~ ~b, t ~ [tl, t2]. 

Definition 4. We shall call the set s of all the points (tl, xl) ~ # • ~m from which at least one viable 
trajectory of the inclusion (1.2) emerges the viability kernel of inclusion (1.2). 

Lemma 4. A compactum ~b C ~m exists such that ~ C 3~ x ~ .  
Like Assertion 1, the following is true. 

Assertion 2. T C ~ C ~. 
The kernel f~ is close to the kernel f~' and their relation is characterized by the closeness of the 

attainability sets: the sets Y(t2; q, xl) is equal to the closure of the set X(t2; tl, Xl). 

2. A T I M E - D I S C R E T E  A P P R O X I M A T I O N  OF T H E  V I A B I L I T Y  
K E R N E L  f~ 

We now propose a method for the approximate construction of the set f2, using constructions similar 
to those described earlier in [9]. Here,  the set Y-1(tl; t2, x2) = {Xl ~ ~m: x2 ~ Y(t2; q, xl)} C ~ of all 
the points xl at which the trajectories of the inclusion 

y[X]~ F*(X,y). Y[tl] = X2; F*(%y)  = - F ( t l + t 2 - % y  ), X~ 1 = [tl, t2] 

arrive at the instant z = t 2 plays an important role. 
This inclusion can be treated as inclusion (1.2) defined in terms of an "inverse" time x. We now 

establish the correspondence of the set 

~ ' - l ( t l ;  t2, x2) = x 2 - ( t  2 - q)F( t  2, 12) C Rtn 

to the set Y-l(tl; t2, X2). 
The former set depends on (t 2 -  tl) of the length of the segment I and approximates the set 

y-l(q; t2 ' x2 ) well. In fact, the following estimate holds 

d(y - I ( t l  ; t2, x2),  ~ ' - l ( t l ;  t2, x2) )  <- (0(t  2 - t l )  ; limt~(t2 - tl) = 0 when t 2 - t I --> 0 
t 2 - t I 

where the scalar function o)(t 2 - t l )  is independent of the point (t2, X2) and satisfies the above-mentioned 
limit equality. 

We also define the set 

~-1 
Y (t  1, t2, X 2) = ~ . . ) { Y - l ( t l ;  t2, x2):  x 2 ~  X 2 } c R  ra 
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We now turn to the basic constructions. For each natural  n, we introduce a part i t ioning F,  = {to = t (~ 
t (1), t (2) . . . . .  t (n) = 0} of  the interval ~ which is un i fo rm with instants  t (i) E ~ and a d i ame te r  

A n = (O- tn ) /n ,  t(i)_t(i-1) = An , i = 1,2 . . . . .  n 

We now fix a certain n. The  part i t ioning Fn cor responds  to it. We m a k e  the target  set T discrete  
in t ime by associating with it the set T~ of  the sets Zn(t (i)) C ~ ,  t (i) E In, def ined by the equali t ies 

Tn(t (~ = 0 ,  Tn(t (i)) = k..){T(t): t ~  [t(i-1),t(i)]}, i = 1,2 . . . . .  n 

We will call this set discretization of  the target  set T. 
We let 

K = max{l l f ( t ,x ,u) l l :  ( t , x , u ) ~  , , r  

to(A) = Ato*((1 + K ) A ) ,  A > 0  (2.1) 

to*(A) = sup{d(F( t  l, xl) ,  F(t2, x2)): ( tp  xl),  (t 2, x2) ~ # x 9 ,  Itl - t21 + Ilxl - x2l I < A} 

Here ,  to*(A) is the modulus  of  the continuity of  the m a p  (t, x) --~ F(t, x). 
We now recurrent ly  assign the number s  e (i) _> 0 (i = n, n - 1, ... , 0), associated with the instants  

t (i) of  the par t i t ioning F n as follows: 

e. (n) = KAn; e. (i) = to (An)+( l  + LAn)e (i+l), i = n - l , n - 2  . . . . .  0 

Assertion 3. 

l immaxe (i) = 0 
i 

H e r e  and hencefor th  the limit is t aken  as n ---) oo. 
The  p roo f  is similar to the p roo f  of  a similar assert ion in [9]. 
In the case of  fixed n, we shall approx imate  the viability kernel  f2 with the collection of  sets 

{~n( t  (i)) C 9 :  t (i) ~ Fn} (2.2) 

which we de te rmine  recurrently,  start ing f rom the last instant  t (n) = 0 and finishing with the first instant  
t (~ = to. 

Definition 5. We will call the collection of sets (2.2), defined by the rules ~n(t  (n)) = rn(t(n)), the discrete 
approx imat ion  of  the kernel  f~; ~n(t  (i)) (i = n - 1, n - 2 . . . . .  0) is de te rmined  in three  stages: 

(1) ~-~n( t (i)) = ~ - 1  (t(i), t(i + 1), ~-2n( t(i + 1))), (2) ~2n( t (i)) = fin( t (i)) f) r t(i))e(i) , (3) an(  t (i)) = ~'~n( t (i)) U rn( t(i)). 
H e r e  and below, Xa is the closure of  the e -ne ighbourhood  of  the set  X C R m. 
F rom the discrete approx imat ion  of  the kernel  f~ (see Fig. 4), we change  to its limit approximat ion .  

Definition 6. We will call the set f~0 of  all the points  (t ~ x ~ C ~ x ~b which can be r ep resen ted  in the 
fo rm 

(t o , x  ~ = l im(t  n,xn), t n>t~ (t n,x n)~ F , x ~ n ( t n ) ,  n = 1,2 . . . .  (2.3) 

the limit approx imat ion  of  the kernel  f~. 
The  inclusion T C f~0 C q~ holds. 

3. F U N D A M E N T A L  T H E O R E M  

We will now formula te  a basic assert ion which justifies the in t roduct ion  of  the discrete approx imat ions  
n,,(t% 
Theorem. 

~ o = ~  
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Proof. We will first prove the inclusion f~0 C fl and, then, the inclusion fl  C f2 ~ 
To prove the inclusion ~0 C f~, we will select an arbitrary point (t ~ x ~ �9 f~0 and show that (t ~ x ~ �9 f~. 

Using the definition of fl0, the sequence of points (2.3) is found. 
We fix an arbitrary number n and consider the point (t n, x n) �9 f~n. Using the definition of f~n(tn), the 

Euler's broken line fin[t] is found, which is defined in the interval [t n, t~], tn >- t n, tn �9 Fn and linearly 
constant in the intervals (t (i), t (i + 1)) C [t n, tn] of the partitioning Fn: 

Yn[t] = const �9 F( t  (i+ l), ~.[t(i+ l)]), t �9 (t (i), t (i+ O) 

The following conditions are satisfied here. 
1. At the instant t n, the broken line fin[t] emerges from the point xn: 

~ . [ t" ]  = x" 

and, at the instants t (i) �9 [t n, tn] of the partitioning, Fn satisfies the inclusion fin[t (i)] �9 ~(t(i))do 
2. At the instant tn, the broken line fin[t] enters the set Tn: 

(3.1) 

~.[t.] �9 Tn(t . )  (3.2) 

3. The instant t (i) = t n is the minimum instant of the partitioning Fn, at which the broken line fin[t] 
enters Tn: 

y.[t  (i)] ~ T.(t(i)),  t (i) �9 [t n, tn), t (i) �9 F. (3.3) 

Suppose t~ ) = tn - An �9 Fn and consider the interval [t (i), tn]. It follows from the inclusion (3.2), the 
definition of the set Tn and definition (2.1) that an instant Zn �9 [t~ ), tn] can be found at which the following 
inclusion holds 

}~[x,] �9 T(x~)ga. (3.4) 

In T(xn), we select the point yn which is closest to fin[Xn]. The following inequality is satisfied 

I lY.  -  ntX211 (3.5) 
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Hence, Euler's broken line y~[t], t �9 [t n, t~] is determined for each n, which satisfies conditions 
(3.l)-(3.3), and the instant x~ is determined at which inclusion (3.4) is satisfied. Without loss of generality, 
we shall assume that the following limit exists 

limz. = ~ (3.6) 

We now extend the definition of all the functions fin[t], t ~ [t ~, tn] to the interval I ~ = [t ~ ~] and we 
establish a correspondence of the function fin[t] to each broken line s t �9 i0: 

I Yn[t"], t � 9  [t o , t  n] ( 

xn[ t] ~yn[t], t �9 (t ~,'cn), Xn < ~; ~ [ t ]  yn[tn], t �9 [t ~ t ~] = = , "C~>~ 

t/y.[X.], t � 9  [Xn,~] t~n[t], t � 9  (t n, =C) 

From the uniformly bounded and equicontinuous sequence {s } in the interval i0, we separate out 
a uniformly converging subsequence. Without loss in generality, we shall assume that the sequence {s 
converges itself uniformly and suppose that x[t] = lim Yn[t], t �9 I ~ 

Using standard techniques, it can be shown that the function x[t] is a trajectory of inclusion (1.2), 
which does not leave the constraint �9 over the whole of the interval I ~ We will now show that 
x[t ~ = x ~ Actually, from the definition of the functions x[t] and s we have 

x[t ~ = limJ.[t  ~ = lim~n[t" ] 

from which, when account is taken of condition (3.1) and the equality limx" = x ~ we obtain x[t ~ = x ~ 
We will show that, all the instant t = ~, the trajectoryx[t] enters the target set. In fact, in a similar 

manner to the above, we have 

x[~] = lim.~.[~] = lim~.[x.] (3.7) 

(when the convergence (3.6) is used in writing the last equality) It follows from inequality (3.5) that 

lim~,[x,] = limy, (3.8) 

Since y ,  �9 T(Xn), by virtue of the convergence (3.6) and the target set to be closed, we obtain 

limy, �9 T(~) (3.9) 

It follows from the limit relations (3.7)-(3.9) that x[~] �9 T(~). 
Hence, the trajectory x[t] emerges from the point (t ~ x U) and is contained in �9 up to the instant 

when it enters the target set. This means thatx[t] is a viable trajectory of inclusion (1.2). Consequently, 
0 0 0 0 0 0 ( t ,  x ) �9 fL By virtue of the arbitrariness of the point ( t ,  x ) �9 f2,  we obtain ~ C ~. 

0 0 0 0 0 0 Proof of the inclusion f~ C f~. We select an arbitrary point ( t ,  x ) �9 f~ and show that ( t ,  x ) �9 f~.  
0 0 1 0 0 Supposey[t] ,  t �9 I = [t ,  t ] is a viable trajectory of inclusion (1.2), emerging from the point ( t ,  x ). 

It satisfies the following conditions 

y [ t ] � 9  O( t ) ,  t ~  i0; y [ t l ] ~  T(tl); y [ t ] ~  T(t) ,  t � 9  [t~ 1) (3.10) 

For each natural n, we denote the instant of the partitioning F. which is closest to t from the right 
by 

t . ( t )  = min{t(i)�9 F.: t<t ( i )} ,  t � 9  ..~ (3.11) 

We now fix n and consider the interval [in, tn], ~-n = tn(tO), tn = tn(tl) �9 It follows from the definition 
(3.11) that 

to�9 [ln-An, tn]; t l � 9  [ ' in-An,  in] (3.12) 
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Taking into account the second condition of (3.10), the second inclusion of (3.12) and the definition of 
the set Tn, we obtain 

y[t 11 ~ TN(iN) (3.13) 

We now continue the trajectoryy[t] on the interval [t 1, in] in an arbitrary manner but in such a way 
that it satisfies the inclusion 

It] ~ F(t, y[t]) almost everywhere in It I, i N ] 

The trajecto~jy[t] of inclusion (1.2) is not a viable trajectory in the interval [t ~ in] but the part of 
it y[t], t ~ [t ~ t 1] is still a viable trajectory. 

Using procedure, a backward-stepping, we establish the correspondence of the trajectory y[t], 
t ~ [t ~ in] to Euler's broken line. We put 

YN[iN] = Y [ t  l] (3.14) 

and, assuming that the value of  yn[t (i + 1)] has already been determined at the instant t (i + 1) E Fn, we 
construct the vectorf( t  (i+ 1)) which satisfies the following two conditions 

f(t(i+ i)) ~ F(t(i+ l), ~n[t(i+ 1)]) 

(f(t(i+ l)), s(t~i+ 1))) = max{ ( f ,  s(t  (i+ l))): f ~ F(t(i+ 1), ~n[t(i+ I)])} 

where the vec tor  S(t (i + 1)) = y[t(i + 1)] _ fn[t(i + 1)]. Here, (., .) is the scalar product of vectors. 
Then, as the values of fn[t], t ~ [t (i), t (i § 1)), we take 

~N[t ] = ~N[t(i+ i)] _ ( t -  t (i+ l ) ) f ( t ( i+  1)) 

Euler's broken line fin[t] is thereby determined in the interval [i n, in]. By virtue of the definition of 
this line at the instant in, the following estimate holds 

lighteN]- y[iNll[--- ga. 

Furthermore, the estimate 

~n[t (i)] - y[t (i)] < E (i) (3.15) 

is true for all instants t (i) ~ [?n, in]. 
The broken line fin[t], t ~ [i n, in] is shown schematically in Fig. 5. 
From relation (3.13) and the definition (3.14), it follows that the broken line Yn[t] reaches the 

discretization of the target set: 

(3.16) yN[iN] ~ Tn(i N) 

Moreover, from inequalities (3.15) and the inclusion y[t (i)] ~ ~(t(i)), we obtain 

yN[t (i)] E ~(t(i))r t (i) E [i n, in] 

(3.17) 

It follows from this and inclusion (3.16) that 

~n[t (i)] ~ ~n(t(i)), t (i) ~ [i N, in] 

We now introduce the notation 

- - N  

YN = YN[t ] (3.18) 
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The sequence { ( i  n, Yn)} converges to the point (t ~ x~ In fact, it follows from the first inclusion of (3.12) 
n 0 that lim? n = t ~ and we conclude from this that limy[[ ] = x .  The limit relation 

limy, = limy[i "] = x ~ (3.19) 

follows from the inequality Ilyn _y[~n] II ~ ~(0) (see (3.15)) and Assertion 3. 
It therefore follows from relations (3.17)-(3.19) that a sequence (?',y~) ~ F~ x ~'~n(t n) (n = 1, 2 . . . .  ) 

has been found which satisfies the relation 

(t  0, x0)  = l i m ( ? ' ,  y , )  

Consequently, (t ~ x ~ ~ f~0. Since the point (t ~ x ~ is arbitrarily chosen in ~,  then f~ C f~0. 
The theorem is proved. 
The proof of the theorem which has been presented does not give upper estimates of the Hausdorff  

d i s t ances  d(~( t ( i ) ) ,  ~n(t(i))). It is only possible to indicate a one-side estimate for them. For all natural 
n and t (i) E Fn, the following inclusion holds 

fZ(t% c fz,(~i))ei) 

The derivation of this estimate is analogous to the derivation of the estimate from [9]. 

This research was supported by the Russian Foundation for Basic Research (02-01-00769, 
00-15-960571). 
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